INTRODUCTION

Recurring civil wars are a chronic source of violence, suffering, and pain for many people. For some countries, the cycle of violence seems inescapable. In many cases, the violence within the borders of a state are heavily funded and supported by actors outside those borders. This phenomenon is the impetus for this project, which seeks an answer to the following questions: What role does external military support play in civil war recurrence? Why do some cases of external support reignite conflict, while others do not?

This project seeks to fill two major gaps in the literature regarding civil wars. First, while the literature has examined the role of external support in civil wars, empirical studies have not operationalized external support as a primary explanatory variable. Second, most work focusing on external support has investigated its effect on civil war onset or civil war termination, while neglecting a full exploration of external support's impact on civil war recurrence. Additionally, by linking external support to civil war recurrence using the ideas of offensive and defensive technologies, this project applies the logic of offense-defense theory (ODT) to a domain it has not yet been extended to. Furthermore, this project has relevance for contemporary global affairs. Civil war recurrence is a significant source of human suffering, and the contribution made by this project will allow better prediction of this event. This improved predictive capability will better empower policymakers and peacekeepers to prevent such violence before it occurs.

The remainder of this project will be organized into the following sections: 1) the literature review; 2) the theory and hypotheses; 3) the research design; 4) the results and analysis; and 5) policy implications and avenues for future research.

LITERATURE REVIEW

This literature review will be organized into three major sections: 1) a review of literature addressing external support in civil wars (my independent variable of interest); 2) a review of literature addressing civil war recurrence (my dependent variable); and 3) a review of offense-defense theory (which is the basis of the causal logic linking my independent and dependent variables).

External Support

“External support” consists of military resources provided to a warring party or potential combatant within a given country by an actor located outside the borders of that country. There exists a wide variety of literature...
concerning the role of external support in civil war. This literature explores such topics as what type of rebel groups receive support, the roles of ethnic ties in sponsorship, and even how support can increase the likelihood of interstate conflict between a sponsor state and the state fighting the sponsored party (Gleditsch, 2007; Salehyan, 2008; Salehyan, Gleditsch, & Cunningham, 2011). In a seminal article in the study of civil wars, Fearon and Laitin (2003) found that foreign sponsorship significantly increased the probability of civil war onset. This is intuitive given that rebel groups are typically funded by donations from foreign states and diasporas, not by the population of the warring country (Collier et al., 2003). Despite the widespread interest in the role of foreign sponsors, inadequate attention has been paid to the role external support plays in civil war recurrence and the different categories of support sponsors can provide.

While the various types of support sponsors can provide has received little attention in the quantitatively-oriented literature, there has been some notable work that disaggregates general support into its primary subcategories in the qualitative literature. Perhaps the most systematic attempt was undertaken by Byman et al. (2001), who not only divided foreign support into ten categories, but also established a hierarchy for understanding the varying degrees of significance these categories of support have in bolstering an insurgency. While the categorization scheme Byman et al. established makes many useful contributions to how we conceptualize external support, it does not employ an offense or defense distinction similar to the one I propose here.

A prominent article concerning foreign sponsors in civil war notes (when summarizing the finding of previous work): “Civil wars with outside involvement typically last longer, cause more fatalities, and are more difficult to resolve through negotiations” (Salehyan, Gleditsch, & Cunningham, 2011). Given that the literature has produced such unequivocal findings concerning the impact of external support on civil war, it is surprising that the role of external support in civil war recurrence has not been explored to a greater extent.

Civil War Recurrence and Peace Duration

Throughout this paper, I use the terms civil war recurrence and peace duration interchangeably, as they are essentially two sides of the same coin. Civil war recurrence refers to civil war happening after a period of peace since the previous war. Peace duration refers to the amount of time between the end of the initial war and the start of the recurring war. The probability of civil war recurrence is inversely related to the expected peace duration by definition (as the probability and recurrence increases, the expected duration of peace decrease).

The literature on civil war recurrence has established a laundry list of factors that influence a return to conflict: the amount of time elapsed since the previous war, the outcome of the previous conflict, the presence of peacekeeping forces post-conflict, duration of the previous war, size of the government’s post-war military, number of fatalities in the previous war, level of economic development, partition of the state, and proxies for the quality of life such as infant mortality.

The literature on civil war recurrence has established a laundry list of factors that influence a return to conflict: the amount of time elapsed since the previous war, the outcome of the previous conflict, the presence of peacekeeping forces post-conflict, duration of the previous war, size of the government’s post-war military, number of fatalities in the previous war, level of economic development, partition of the state, and proxies for the quality of life such as infant mortality.

“...The literature on civil war recurrence has established a laundry list of factors that influence a return to conflict: the amount of time elapsed since the previous war, the outcome of the previous conflict, the presence of peacekeeping forces post-conflict, duration of the previous war, size of the government’s post-war military, number of fatalities in the previous war, level of economic development, partition of the state, and proxies for the quality of life such as infant mortality."

Offense-Defense Theory

This project will link external support to civil war recurrence through a theory that is partially inspired by offense-defense theory (ODT). The central claim of ODT is that war is more likely to occur when offense has the military advantage than when defense has the military advantage. In other words, an offense-defense balance (ODB) tilted toward the offense exacerbates the security dilemma, while an ODB tilted toward the defense ameliorates it. When attacking is easier than defending, even status quo powers, who merely seek security maximization, are incentivized to take aggressive actions (Jervis, 1978; Van Evera, 1998). Furthermore, these undesirable effects of offense-dominance are self-reinforcing and difficult to escape (Van Evera, 1998).

While ODT is primarily concerned with examining states interacting in the international system, the concept of the ODB has also been applied to ethnic civil wars (Kaufmann, 1996; Posen, 1993). ODT, however, has not been effectively applied to non-ethnic civil war, due to the assumption that the ODB is only relevant for nationalistic groups (Posen, 1993). As the underlying logic of ODT concerns structural incentives faced by actors that think strategically about those incentives, there is no reason the theory’s logic could not be applied to any identifiable group that acts in such a manner—regardless of whether the group is a nation or has nationalistic tendencies. Furthermore, Posen’s study chooses a measurement of the ODB that prioritizes group cohesion over military assets because Posen (1993) assumes that the military assets possessed by sub-national groups are usually meager, and that cohesion is a more significant determinant of offensive capability. While this could have been true for the cases Posen studied (ethnic wars in post-Soviet states), there is no reason to assume that this is generally true of civil wars. External military support from foreign states provides military assets that—while not usually “cutting-edge” quality by great power
This study does not speculate on how useful its theoretical assumptions are for theorizing about civil war onset.

1 This study does not speculate on how useful its theoretical assumptions are for theorizing about civil war onset.

2 While there are many other possible necessary conditions for civil war recurrence, my model focuses in on these two. Another possible necessary condition comes from Walter (2004): individuals must be able to rationalize engaging in rebellion—the expected utility of participating in rebellion must be greater than the expected utility of supporting the state or inaction.

3 This distinction in ordering principles is borrowed from Waltz (1979).
strategic actors to hunker down in an attempt to better protect what they already have under current conditions.

For each of the major differences between traditional ODT and my theory (form of technological change, effect of technological change, and level of analysis), my alteration serves to increase the overall utility of the theory. The shift of the effect of technological change from superiority to availability allows for a much clearer theory. When compared with superiority, availability is easier to operationalize, more constraining, and less prone to misperception. Together, these features of availability sidestep many of the criticisms of traditional ODT.4

The shift of the form of technological change from innovation to importation and the shift of the unit of analysis from the international system to the nation-state both serve a similar purpose: to increase the number of cases and the variation across those cases. By viewing each nation-state as its own technological environment that is subject to influence by the importation of external technologies, we can dramatically increase the number of cases to test the predictions of the theory. Instead of merely examining one international system across time, we can analyze hundreds of national systems across time. Not only does this offer a larger number and variety of cases, but each of these cases is likely to have more variance in technology over time.

In the international system, the most advanced technology available to great powers progresses slowly over time, and once a technology becomes available, it rarely becomes unavailable until it becomes strategically obsolete. This is not necessarily true of national systems. A small, non-industrialized country, for example, would likely import the majority of its small arms, making the availability of small arms in this country sensitive to the country’s external environment. Unlike the case of great powers in the international system, a non-obsolete technology (the small arms) may become unavailable at a certain point in time due to the lack of an external sponsor state or the application of more stringent small arms non-proliferation measures. Such cases allow an analysis of what happens when a military technology is removed from a strategic environment. While traditional ODT can only speculate on the effects of certain technologies by looking at the “before and after” of their initial adoption (since from that point on, they are always available), the analysis offered in this paper can assess the impacts of technologies more thoroughly by looking at the fluctuating availability of a given technology across time for each national system.

Keeping these differences from traditional ODT in mind, I now present the following explanation for how the offensive or defensive nature of external military support will impact the duration of peace in post-conflict countries: Offensive forms of support—those that increase the capacity for accomplishing revisionist goals—should lead to a higher probability of war recurrence. Increased capacity for changing the status quo is likely to drive actors who were previously dissatisfied, but incapable of affecting change, to attempt a revision of the status quo. Defensive types of support—those that increase the capacity for protecting the status quo power relationships—should lead to a lower probability of war recurrence. Such status quo-entrenching capacity is likely to make altering the status quo more difficult. Ambiguous types of support—those that increase the capacity for both offense and defense—should not significantly impact peace duration. Ambiguous types of support are likely to contain countervailing tendencies (they are offensive in some ways, defensive in others). These countervailing tendencies are likely to result in the support not substantially altering the expected utility of war relative to the expected utility of the status quo.5 The core logic of this argument is that when it is better to attack than defend in the short-run, instability is more probable than it would be if the inverse is true.

If this is the case, then H1 is not likely to be supported due to the opposing effects of offensive and defensive types of support. However, the following three-part hypothesis should be supported if offensive and defensive forms of support have distinct impacts on recurrence:

H2a: The presence of offensive external military support is associated with a shorter peace duration.

H2b: The presence of defensive external military support is associated with a longer peace duration.

H2c: The presence of ambiguous external military support has no significant effect on peace duration.

If H2 is supported (and H1 is not supported), then there is strong support for the utility of conceptualizing types of external military support as offensive or defensive. This could lead to theoretical speculation about how these different types of support (offensive and defensive) are used by the different types of actors that take part in a civil war: states and rebel groups.

Traditional ODT treats all actors as like units (symmetrically), since the only actors it addresses are states. My theory, however, is being applied to states and rebel organizations. There are two potentially viable interpretations of how these two actors should be conceptualized. The first potential conceptualization is an asymmetric model: states are defensively-oriented entities with a “watch the throne” mentality, and rebel groups are offensively-oriented entities with a “capture the state” mentality. If the asymmetric model is adopted, then we should expect states to value defensive support significantly more than offensive support, while the opposite would be true for rebels. The second potential conceptualization is a symmetric model: once civil war breaks out, what was formerly “the state” has ceased to possess a monopoly of the legitimate use of force, and as thus ceased to be an effective state. If the symmetric model is adopted, then we ought to view neither warring party as playing pure defense or pure offense. In this model, there is no incumbent and no challenger—merely two (or more) contenders.

I propose that the symmetric model is more useful in assessing the effects of offensive and defensive technologies. My theory treats both states and rebels as rational actors seeking to maximize their utility.”

4 Specifically, the use of availability avoids the following three criticisms leveled at traditional, superiority-focuses ODT: superiority is a vague construct that is difficult to measure or assess in practice; superiority is not particularly constraining—states are free to act against the incentives of the ODB; and superiority is highly prone to misperception. Availability is simple to define—either a technology is present at a specific place and time, or it is not. It is also highly constraining: regardless of the motivation or incentives to act offensively, the unavailability of offensive military technologies would prevent an actor from taking offensive action. Finally, availability is significantly less likely to be misperceived. This is largely a product of how much easier availability is to define, but ought to be considered separately because it addresses a unique criticism of traditional ODT.

5 Specific examples of what this study considers offensive, defensive and ambiguous support are provided in the research design.
and rebels as rational actors seeking to maximize their utility.6 Depending on the strategic environment, states may be prompted to initiate war or rebels may be prompted to entrench themselves and wait for a more opportune time to challenge the state.7 The following hypotheses ought to be supported if the symmetric model is more accurate description of civil war than the asymmetric model:

\textbf{H}\textsubscript{3A}: The presence of offensive external military support for the state is associated with a shorter peace duration.

\textbf{H}\textsubscript{3B}: The presence of defensive external military support is for the state is associated with a longer peace duration.

\textbf{H}\textsubscript{3C}: The presence of offensive external military support for rebel groups is associated with a shorter peace duration.

\textbf{H}\textsubscript{3D}: The presence of defensive external military support for rebel groups is associated with a longer peace duration.

This set of hypotheses is nearly identical to the first two parts of H\textsubscript{2}. The core difference is that each claim is being tested separately for states and rebels, allowing me to assess whether or not the two groups are similar in their response to offensive and defensive technologies.

\section*{RESEARCH DESIGN}

This section will discuss the plan to be implemented in testing the hypotheses presented above. Specifically this section will do the following: 1) identify the universe of cases; 2) operationalize concepts central to the hypotheses being tested; and 3) discuss the analytical technique utilized to test the hypotheses.

\subsection*{Domain Identification}

The temporal domain of the analysis is 1976 to 2009. This period has been selected primarily to accommodate methodological restrictions: reliable data on the types of foreign support considered in this study are only available for this period of time. The UCDP External Support Dataset contains data from 1975 to 2011 (Högbladh, Pettersson, & Themmér, 2011). However, my operationalization of support provision (discussed in the next section) further limits my temporal domain by one year. While it would be preferable to consider all cases from 1945 to present, this domain is theoretically appropriate since the late 20th century saw a drastic increase in civil wars, many of which were recurring conflicts. The spatial domain of this project is global, encompassing all cases of civil war termination (and subsequent post-war peace) in the temporal domain. Including all cases of civil war is advantageous for the following reasons: 1) there is no theoretical expectation that the dynamics of civil war recurrence are significantly different across cultures or geographic regions; and 2) a global scope allows for this study to draw more general conclusions about the effect of external military support on peace duration. The unit of analysis for this project is the post-war country-year—each post-war year is treated as a potential year for war recurrence.

\section*{Operationalization}

The dependent variable in this project is \textit{civil war recurrence}. For the purpose of the analysis, civil war is operationalized as a higher threshold version of what is referred to as “armed conflict” by the Uppsala Conflict Data Program (UCDP): “a contested incompatibility that concerns government and/or territory where the use of armed force between two parties, of which at least one is the government of a state, result[s] in at least 25 battle-related deaths” (Gleditsch et al., 2002). This project’s definition of civil war alters the UCDP definition by raising the battle-related deaths threshold to from 25 to 1,000. This was done in order to capture recurrences of \textit{major fighting}.8 Battle-related deaths data is retrieved from the UCDP PRIO Battle Deaths Dataset 1946–2008 (Lacina & Gleditsch, 2005).9 Furthermore, UCDP applied their definition of armed conflict to specific conflict dyads, but this project simply applies the high-threshold definition to a given country for a given year.10 In other words, for a conflict to be included in the dataset constructed for this study, at least one year of the conflict must have 1,000 or more battle-related deaths. The civil war lasts for as many years as the 1,000-battle-related-deaths threshold is met.11 An exception is made if the battle-related deaths count falls below 1,000 for only one year, in which case that year is coded as a lull in the fighting, not a peace year. If the battle-related deaths count falls below 1,000 for consecutive years, those years are coded

\footnotesize
6 Here I return to referring to one actor as a state and another actor as the rebels, despite showing above that under the symmetric model, this distinction is not particularly accurate. I do this for conceptual clarity and brevity, as there is still one entity which may colloquially be called “the state” and one which may be colloquially called “the challenger,” “the rebels,” or “the insurgents.”

7 For example, if a state finds itself in a clearly offensive environment, its most strategic action could be to employ its offensive capabilities to repress or eliminate dissatisfied constituencies before they have an opportunity to form an organized rebellion. Taking such an offensive action may give the state a first-strike advantage, but if the repressed group is able to form an organized resistance, it also embroils the state in a civil war that may have been avoided otherwise. On the other hand, if a potential challenger finds itself in a clearly defensive environment, its most strategic action could be to avoid conflict with the state, buying time until the strategic environment favors offense. This way, the would-be rebels keep any resources they have already accumulated and continue to exist as a political unit—allowing them to live to fight another day.

8 While this paper consistently refers to civil war as if it is a simple off-or-on binary, “civil war” violence can vary across a wide spectrum in reality. The goal of this study is not to evaluate when civil wars exist per se, but to evaluate when mass violence associated with civil conflict exists. For example, if a country experiences intense civil war (1,000 or more battle-related deaths) for a number of years, followed by minor armed conflict for an extended period (less than 1,000, but more than 25, battle-related deaths), and then more intense civil war, the UCDP operationalization results in observation of civil war for the entire period. UCDP’s definition results in coding many wars that subsided (a couple years of intense fighting, followed by many years of lower level conflict) as a decades-long civil war, thus obscuring the recurrence of major fighting, which is what this project is fundamentally seeking to understand.

9 This dataset contains three measurements for annual battle fatalities: the best estimate, the low estimate, and the high estimate. For many conflict-years, a best estimate could not be determined. I use the best estimate when available. When the best estimate is missing, this project uses the average of the high and low estimate. It is assumed that this value is closer to the true value than the extreme high and low estimates.

10 As this project uses the unit of country-year (instead of conflict-year), the battle-related deaths for concurrent conflicts are combined for a given year. For example, if there are two conflicts in the same country during the same year, and each conflict inflict 500 casualties, that year is coded as a civil war year (since it meets the 1,000-battle-deaths threshold).

11 There is one exception to this rule: the war between the United States and al-Qaeda. The increased casualty threshold and UCDP criteria are met for this case; however, this conflict is fundamentally different from a civil war and encompasses an international dynamic not present in other cases of war between a state and non-state actor. Thus, this conflict was removed from the analysis.
as peace years. If the battle-related death count for a given year meets the threshold after two or more peace years, then that year is coded as the start of a new civil war—a *recur year*. Due to methodological restrictions concerning my independent variables of interest (elaborated on below), initial wars must end in 1975 or later for their recurrences to be acknowledged in my dataset.

There are numerous independent variables of interest in this project. The first is the *existence of external military support*. For this variable, the coding decisions made in the UCDP External Support Project—Primary Warring Party Dataset are used for the creation of the variable "external_exists," which is a binary variable indicating the existence of "clearly established external support" (Högbladh, Pettersson, & Themnér, 2011). A significant limitation of the external support data is that it only contains observations for country-years containing a conflict that meets the UCDP definition of armed conflict. While Högbladh, Pettersson, and Themnér (2011) have observations for some years coded as peace years by this study (those that meet the UCDP battle-related deaths threshold, but not the 1,000-battle-related deaths threshold), many more years have missing observations. This project proxies the provision of support during these years with the *perceived availability of support*.

The perceived availability of support is estimated based on the most recent year for which an observation is present. In other words, the value for the most recent observation is imputed for the missing observations until the next observation containing a value of support occurs. This estimation is based on the assumption that both rebels and states base their perceived ability to attract external support on their ability to have attracted such support in the most recent year of conflict.

The remaining explanatory variables of interest used in this project are all sub-categories of *existence of external support*. All support variables are present in three forms—general, rebel, and state. *General support* is present when either rebels or the state are supported; *rebel support* is present when rebels are supported; *state support* is present when the state is supported. In country-years containing conflict between a state and multiple rebel groups, only one rebel group must receive support for that observation to be coded as having rebel support. This coding decision was made to keep the interpretation of the "true" values for all dummy/binary variables consistent. The UCDP External Support Project—Primary Warring Party Dataset simply codes for the presence or lack of presence of support (Högbladh, Pettersson, & Themnér, 2011). Therefore, this study has simply coded for the presence of support for any rebel group—this project does not take into account which or how many rebel groups receive the support.

Even with the switch from superior to availability, operationalizing offensive and defense technologies is still a great challenge. Many scholars acknowledge that distinctions will never be entirely clear and will always be prone to misperception by political actors and scholars alike (Jervis, 1978; Van Evera, 1998). That being said, I have operationalized both offensive and defensive technologies to the best of my abilities, given present data limitations. It is worth repeating that I am operationalizing the availability of offensive technology and the availability of defensive technology, not the relative superiority of offense—commonly called the offense-defense balance.

This project uses a *proxy for offensive support*: "weapons support" in the UCDP External Support Project—Primary Warring Party Dataset. Weapons support includes donations, transfers, supplies or loans of weapons or ammunition of any kind (Högbladh, Pettersson, & Themnér, 2011). This category of support does not perfectly conform to the ideal-type of offensive support, but it is the closest approximation for offensive support in the currently available data.

A proxy is also used for *defensive support*: "materiel/logistics support" in the UCDP External Support Project—Primary Warring Party Dataset. Materiel and logistical support includes many forms of non-weapon supplies. Examples include vehicles, field hospitals, construction bulldozers, troop transportation, and repair and support facilities (Högbladh, Pettersson, & Themnér, 2011). This category of support is too broad to be entirely defensive, but is the closest to a purely defensive support type.

For this study, *ambiguous support* is also operationalized via proxy: "funding/economic support" in the UCDP External Support Project—Primary Warring Party Dataset. Funding and economic support includes cash donations, military loans, and military grants, but does not include humanitarian, development or balance of payments aid/loans (Högbladh, Pettersson, & Themnér, 2011). This category is the best proxy for ambiguous support, since financial resources are the most fungible across offensive and defensive military objectives.

Numerous variables must be controlled in order to isolate the effect of external support on civil war recurrence. First, gross domestic product per capita (GDP per capita) is controlled by using the data from the Economic Statistics Branch of the United Nations Statistics Division (UNSD, 2012). This variable is used to estimate the wealth of a country. Since a lack of wealth is associated with civil war, not including this control variable would bias the results of the analysis. Second, level of democracy is controlled for using the *polity* variable from the Polity IV Project (Marshall, Gurr & Jaggers, 2013). Since different levels of democracy have been associated with civil conflict, the exclusion of this control variable would result in omitted variable bias.

Third, the *existence of a previous peace agreement* at the conclusion of the most recent period of conflict is included as a control. Data for this variable was retrieved from the UCDP Conflict Termination Dataset (Kreutz, 2010). This variable is controlled because the presence of a peace agreement is thought to be negatively associated with the probability of civil war recurrence. Fourth, since this project required consolidating observations for concurrent conflicts, a control for *multiple rebel groups* was used in the analysis. This variable was generated during the process of consolidating concurrent conflicts by country-year, and is controlled because rebel disagreements, infighting, and collective action issues may affect their ability to reignite war.

Analytical Technique

Each model used in this project is a Cox proportional hazards model, which is utilized to measure the duration of peace. The hazard/failure used in the models is civil war recurrence—the *recur year*. Each model includes identical control variables: lagged GDP per capita, lagged polity2, previous peace agreement, and multiple rebel groups. The independent variable(s) of interest

12 While some may think that the transition from availability to perceived availability reduces the explanatory power of my theory or moves it even farther from traditional ODT, we should not forget the importance Van Evera places on perceptions of the ODB: World War I is explained as a result of a misperceived ODB (1998).

13 While this project does not take into account which or how many rebel groups receive support, this is partially controlled for with the multiple rebel groups variable—which will be discussed below.

15 Both GDP per capita and polity2 are lagged by one year in this project’s models, because economic and political conditions from the previous year are more likely to affect civil war recurrence than similar observations for the year itself. More concerning, observations for the year itself could be highly distorted by the presence (or lack) of civil war, creating an endogeneity problem.
differ depending on the hypothesis being tested, but in each case consists of one or more types of support. For each model in the analyses, there were a total of 520 observations. In order to test H1, a model using the existence of foreign sponsorship and the aforementioned controls will be used.

For the test of H2, several models will be employed: three which include each of the categories of support (offensive support, defensive support, and ambiguous support) on their own; one that includes the two types of support expected to have significant results (offensive support and defensive support); and one that includes all three categories in the same model.

In order to test H3, two models will be used: a model including offensive support for the state and defensive support for the state, and a model including offensive support for rebel groups and defensive support for rebel groups.

RESULTS AND ANALYSIS

As expected, the analysis did not support the rival explanation's hypothesis: H1 (The presence of external military support is associated with a shorter peace duration). Model 1A shows that the external military support variable was not significant by any conventional standard. This is possible evidence that general support has no clear effect on civil war recurrence. Further evidence can be found in Model 1B (which finds external military support for the state to be insignificant), Model 1C (which finds external military support for rebel groups to be insignificant), and Model 1D (which finds external military support for the state and external military support for rebel groups insignificant when assessed together).

However, the analysis did support my primary hypothesis: H2 (H2a: The presence of offensive external military support is associated with a shorter peace duration; H2B: The presence of defensive external military support is associated with a longer peace duration; H2c: The presence of ambiguous external military support has no significant effect on peace duration). Model 2A found that, when assessed independently, offensive support is insignificant. Model 2B found that, when assessed independently, defensive support is significant at a 95% confidence level. Model 2C found that, when assessed independently, ambiguous support is significant. While Model 2B provides compelling results, Model 2D revealed a much more interesting finding: that when both offensive support and defensive support are included in a model, both variables are highly significant, have the expected impact on peace duration, and have large magnitudes. When paired together, both offensive support and defensive support are significant at a 99% confidence level—meaning that each form of support experiences increased significance when the opposite form is controlled. Furthermore, the presence of offensive support increases the probability of civil war recurrence for a given year by 680%, while the presence of defensive support decreases the probability of civil war recurrence for a given year by 93%. When ambiguous support is included in a model with offensive support and defensive support—

as is the case with Model 2E—ambiguous support remains insignificant, as expected.

My analysis also revealed support for my secondary hypothesis: H3 (H3a: The presence of offensive external military support for the state is associated with a shorter peace duration; H3b: The presence of defensive external military support for the state is associated with a longer peace duration; H3c: The presence of offensive external military support for rebel groups is associated with a shorter peace duration; H3d: The presence of defensive external military support for rebel groups is associated with a longer peace duration). Model 3A, which includes both offensive support for the state and defensive support for the state supports H3a and H3b at the 95% and the 99% confidence levels, respectively.

Model 3B, which includes both offensive support for rebel groups and defensive support for rebel groups supports H3c and H3d at the 90% and the 95% confidence levels, respectively. In sum, offensive and defensive support have the same effects no matter who receives them: offensive technologies always increase the probability of war; defensive technologies always decrease the probability of war.

POLICY IMPLICATIONS AND AVENUES FOR FUTURE RESEARCH

These findings have uncovered a series of salient policy implications: the types of support external actors provide can extend (or cut short) the dura-

16 See Appendix A for full results for Model 1B, Model 1C, and Model 1D.
17 See Appendix A for full results for Model 2A, Model 2B, and Model 2C.
18 See Appendix A for full results for Model 2E.
tion of peace in post-conflict countries. By providing defensively-oriented support—such as field hospitals, construction equipment, and maintenance of immobile defensive equipment—external parties can decrease the likelihood of war recurrence. By providing offensively-oriented support—even to actors dedicated to protecting to status quo—external parties will increase the probability of recurrence. Potential interveners thus cannot simply ask if intervention should happen and whom they should support: they must also ask how they ought to support them. Furthermore, many outside parties try to foster stability by “propping-up” weak regimes with offensive support to be used for repressing dissent before it can transform into rebellion. The analysis conducted in this study shows that providing such offensive support is more likely to result in war than stability.

There is still much to be done to improve our understanding of how external military support impacts civil war recurrence. One of the clearest limitations of this project is the lack of data on the availability of foreign support during peace years. Collection of such data would allow for a more precise analysis that does not rely on assuming that potential combatants base their perceived ability to attract external military support on the support provided during the most recent conflict year.

Additionally, the variety of support providers should be explored. This project relied on data that only measured support from foreign states. Diasporas, refugee camps, foreign rebel organizations, criminal organizations, and even wealthy individuals can also support combatants, and may do so in fundamentally different ways than foreign states. Some categories of sponsors may disproportionately provide offensive or defensive support, which would have significant implications for the theory presented in this study.

This paper set out to explore the effect of external military support on peace duration, and has done so using a series of proportional hazards models. This analysis has filled an important gap in the peace duration literature by considering external support as a primary catalyst for recurrence and disaggregating external support into offensive and defensive technologies. The results of testing the impact of offensive and defensive support yielded both high magnitudes and significance: Not only do different types of support matter a great deal, but this study provides robust support for these findings. Furthermore, we have found new evidence in support of the core logic of offense-defense theory. By exploring new testing grounds and making useful alterations to the theory, this paper has extended ODT’s scope and significance.

REFERENCES

INTRODUCTION

Model 1A

| LR $\chi^2 = 17.00; (P > \chi^2) = 0.0045$ | Hazard Ratio | Robust SE | P > $|z|$ |
|--|--------------|-----------|--------|
| existence of foreign sponsorship | 0.536 | 0.299 | 0.264 |
| lagged GDP per capita | 0.999 | 0.001 | 0.052* |
| lagged polity2 score | 0.899 | 0.050 | 0.055* |
| previous peace agreement | 0.609 | 0.392 | 0.441 |
| multiple rebel groups | 0.551 | 0.431 | 0.446 |

Number of observations: 520; Number of failures: 15

*Significance level at $p < 0.10$ **Significance level at $p < 0.05$ ***Significance level at $p < 0.01$

Model 1B

| LR $\chi^2 = 17.73; (P > \chi^2) = 0.0033$ | Hazard Ratio | Robust SE | P > $|z|$ |
|--|--------------|-----------|--------|
| foreign sponsorship for the state | 0.477 | 0.261 | 0.176 |
| lagged GDP per capita | 0.999 | 0.001 | 0.060* |
| lagged polity2 score | 0.905 | 0.048 | 0.072* |
| previous peace agreement | 0.463 | 0.293 | 0.224 |
| multiple rebel groups | 0.416 | 0.335 | 0.276 |

Number of observations: 520; Number of failures: 15

*Significance level at $p < 0.10$ **Significance level at $p < 0.05$ ***Significance level at $p < 0.01$

Model 1C

| LR $\chi^2 = 16.33; (P > \chi^2) = 0.0060$ | Hazard Ratio | Robust SE | P > $|z|$ |
|--|--------------|-----------|--------|
| foreign sponsorship for rebel groups | 1.479 | 0.844 | 0.493 |
| lagged GDP per capita | 0.999 | 0.001 | 0.051* |
| lagged polity2 score | 0.906 | 0.045 | 0.067* |
| previous peace agreement | 0.475 | 0.315 | 0.261 |
| multiple rebel groups | 0.434 | 0.395 | 0.313 |

Number of observations: 520; Number of failures: 15

*Significance level at $p < 0.10$ **Significance level at $p < 0.05$ ***Significance level at $p < 0.01$

Model 1D

| LR $\chi^2 = 18.62; (P > \chi^2) = 0.0049$ | Hazard Ratio | Robust SE | P > $|z|$ |
|--|--------------|-----------|--------|
| foreign sponsorship | 0.430 | 0.243 | 0.136 |
| foreign sponsorship for rebel groups | 1.750 | 1.048 | 0.350 |
| lagged GDP per capita | 0.999 | 0.001 | 0.061* |
| lagged polity2 score | 0.810 | 0.048 | 0.071* |
| previous peace agreement | 0.358 | 0.249 | 0.140 |
| multiple rebel groups | 0.316 | 0.278 | 0.191 |

Number of observations: 520; Number of failures: 15

*Significance level at $p < 0.10$ **Significance level at $p < 0.05$ ***Significance level at $p < 0.01$

Model 1E

| LR $\chi^2 = 7.82; (P > \chi^2) = 0.1666$ | Hazard Ratio | Robust SE | P > $|z|$ |
|--|--------------|-----------|--------|
| offensive support | 1.618 | 1.571 | 0.620 |
| lagged GDP per capita | 0.999 | 0.001 | 0.079* |
| lagged polity2 score | 0.923 | 0.084 | 0.401 |
| previous peace agreement | 0.423 | 0.444 | 0.413 |
| multiple rebel groups | 0.435 | 0.420 | 0.389 |

Number of observations: 520; Number of failures: 15

*Significance level at $p < 0.10$ **Significance level at $p < 0.05$ ***Significance level at $p < 0.01$

Model 1F

| LR $\chi^2 = 12.05; (P > \chi^2) = 0.0341$ | Hazard Ratio | Robust SE | P > $|z|$ |
|--|--------------|-----------|--------|
| defensive support | 0.275 | 0.154 | 0.021**|
| lagged GDP per capita | 0.999 | 0.001 | 0.057* |
| lagged polity2 score | 0.889 | 0.055 | 0.026**|
| previous peace agreement | 0.738 | 0.463 | 0.628 |
| multiple rebel groups | 0.629 | 0.470 | 0.535 |

Number of observations: 520; Number of failures: 15

*Significance level at $p < 0.10$ **Significance level at $p < 0.05$ ***Significance level at $p < 0.01$