Liquid metal-based plasmonics

Jinqi Wang

Abstract


We demonstrate that liquid metals support surface plasmon-polaritons (SPPs) at terahertz (THz) frequencies, and can thus serve as an attractive material system for a wide variety of plasmonic and metamaterial applications. We use eutectic gallium indium (EGaIn) as the liquid metal injected into a polydimethylsiloxane (PDMS) mold fabricated by soft lithography techniques. Using this approach, we observe enhanced THz transmission through a periodic array of subwavelength apertures. Despite of the fact that the DC conductivity of EGaIn is an order of magnitude smaller than many conventional metals, we clearly observe well-defined transmission resonances. This represents a first step in developing reconfigurable and tunable plasmonic devices that build upon well-developed microfluidic capabilities.


Full Text:

PDF